Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2319, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485931

RESUMO

Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Primatas , Imunoglobulina G , Anticorpos Monoclonais , Fungos , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Mamíferos
2.
Genes (Basel) ; 14(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38136948

RESUMO

AA-amyloidosis in Siamese and Oriental shorthair cats is a lethal condition in which amyloid deposits accumulate systemically, especially in the liver and the thyroid gland. The age at death of affected cats varies between one and seven years. A previous study indicated a complex mode of inheritance involving a major locus. In the present study, we performed a multi-locus genome-wide association study (GWAS) using five methods (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB and ISIS EM-BLASSO) to identify variants associated with AA-amyloidosis in Siamese/Oriental cats. We genotyped 20 affected mixed Siamese/Oriental cats from a cattery and 48 healthy controls from the same breeds using the Illumina Infinium Feline 63 K iSelect DNA array. The multi-locus GWAS revealed eight significantly associated single nucleotide polymorphisms (SNPs) on FCA A1, D1, D2 and D3. The genomic regions harboring these SNPs contain 55 genes, of which 3 are associated with amyloidosis in humans or mice. One of these genes is SAA1, which encodes for a member of the Serum Amyloid A family, the precursor protein of Amyloid A, and a mutation in the promotor of this gene causes hereditary AA-amyloidosis in humans. These results provide novel knowledge regarding the complex genetic background of hereditary AA-amyloidosis in Siamese/Oriental cats and, therefore, contribute to future genomic studies of this disease in cats.


Assuntos
Amiloidose Familiar , Amiloidose , Humanos , Gatos/genética , Animais , Camundongos , Lactente , Pré-Escolar , Criança , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Genoma , Fígado/metabolismo , Amiloidose/genética , Amiloidose/veterinária , Amiloidose Familiar/genética
3.
Front Immunol ; 14: 1283595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169647

RESUMO

Neutrophil extracellular traps (NETs) are net-like structures released by activated neutrophils upon infection [e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] as part of the innate immune response that have protective effects by pathogen entrapment and immobilization or result in detrimental consequences for the host due to the massive release of NETs and their impaired degradation by nucleases like DNase-1. Higher amounts of NETs are associated with coronavirus disease 2019 (COVID-19) severity and are a risk factor for severe disease outcome. The objective of our study was to investigate NET formation in young versus aged ferrets to evaluate their value as translational model for SARS-CoV-2-infection and to correlate different NET markers and virological parameters. In each of the two groups (young and aged), nine female ferrets were intratracheally infected with 1 mL of 106 TCID50/mL SARS-CoV-2 (BavPat1/2020) and euthanized at 4, 7, or 21 days post-infection. Three animals per group served as negative controls. Significantly more infectious virus and viral RNA was found in the upper respiratory tract of aged ferrets. Interestingly, cell-free DNA and DNase-1 activity was generally higher in bronchoalveolar lavage fluid (BALF) but significantly lower in serum of aged compared to young ferrets. In accordance with these data, immunofluorescence microscopy revealed significantly more NETs in lungs of aged compared to young infected ferrets. The association of SARS-CoV-2-antigen in the respiratory mucosa and NET markers in the nasal conchae, but the absence of virus antigen in the lungs, confirms the nasal epithelium as the major location for virus replication as described for young ferrets. Furthermore, a strong positive correlation was found between virus shedding and cell-free DNA or the level of DNAse-1 activity in aged ferrets. Despite the increased NET formation in infected lungs of aged ferrets, the animals did not show a strong NET phenotype and correlation among tested NET markers. Therefore, ferrets are of limited use to study SARS-CoV-2 pathogenesis associated with NET formation. Nevertheless, the mild to moderate clinical signs, virus shedding pattern, and the lung pathology of aged ferrets confirm those animals as a relevant model to study age-dependent COVID-19 pathogenesis.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Armadilhas Extracelulares , Animais , Feminino , SARS-CoV-2 , Furões , Modelos Animais de Doenças , Desoxirribonucleases
4.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563514

RESUMO

Similar to many other respiratory viruses, SARS-CoV-2 targets the ciliated cells of the respiratory epithelium and compromises mucociliary clearance, thereby facilitating spread to the lungs and paving the way for secondary infections. A detailed understanding of mechanism involved in ciliary loss and subsequent regeneration is crucial to assess the possible long-term consequences of COVID-19. The aim of this study was to characterize the sequence of histological and ultrastructural changes observed in the ciliated epithelium during and after SARS-CoV-2 infection in the golden Syrian hamster model. We show that acute infection induces a severe, transient loss of cilia, which is, at least in part, caused by cilia internalization. Internalized cilia colocalize with membrane invaginations, facilitating virus entry into the cell. Infection also results in a progressive decline in cells expressing the regulator of ciliogenesis FOXJ1, which persists beyond virus clearance and the termination of inflammatory changes. Ciliary loss triggers the mobilization of p73+ and CK14+ basal cells, which ceases after regeneration of the cilia. Although ciliation is restored after two weeks despite the lack of FOXJ1, an increased frequency of cilia with ultrastructural alterations indicative of secondary ciliary dyskinesia is observed. In summary, the work provides new insights into SARS-CoV-2 pathogenesis and expands our understanding of virally induced damage to defense mechanisms in the conducting airways.


Assuntos
COVID-19 , Animais , Cílios/metabolismo , Cricetinae , Epitélio , Homeostase , Mesocricetus , Mucosa Respiratória/metabolismo , SARS-CoV-2
5.
EBioMedicine ; 79: 103999, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35439679

RESUMO

BACKGROUND: Neurological symptoms such as cognitive decline and depression contribute substantially to post-COVID-19 syndrome, defined as lasting symptoms several weeks after initial SARS-CoV-2 infection. The pathogenesis is still elusive, which hampers appropriate treatment. Neuroinflammatory responses and neurodegenerative processes may occur in absence of overt neuroinvasion. METHODS: Here we determined whether intranasal SARS-CoV-2 infection in male and female syrian golden hamsters results in persistent brain pathology. Brains 3 (symptomatic) or 14 days (viral clearance) post infection versus mock (n = 10 each) were immunohistochemically analyzed for viral protein, neuroinflammatory response and accumulation of tau, hyperphosphorylated tau and alpha-synuclein protein. FINDINGS: Viral protein in the nasal cavity led to pronounced microglia activation in the olfactory bulb beyond viral clearance. Cortical but not hippocampal neurons accumulated hyperphosphorylated tau and alpha-synuclein, in the absence of overt inflammation and neurodegeneration. Importantly, not all brain regions were affected, which is in line with selective vulnerability. INTERPRETATION: Thus, despite the absence of virus in brain, neurons develop signatures of proteinopathies that may contribute to progressive neuronal dysfunction. Further in depth analysis of this important mechanism is required. FUNDING: Federal Ministry of Health (BMG; ZMV I 1-2520COR501), Federal Ministry of Education and Research (BMBF 01KI1723G), Ministry of Science and Culture of Lower Saxony in Germany (14 - 76103-184 CORONA-15/20), German Research Foundation (DFG; 398066876/GRK 2485/1), Luxemburgish National Research Fund (FNR, Project Reference: 15686728, EU SC1-PHE-CORONAVIRUS-2020 MANCO, no > 101003651).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Encéfalo , COVID-19/complicações , Cricetinae , Feminino , Humanos , Inflamação , Masculino , Neurônios , Proteínas Virais , alfa-Sinucleína , Síndrome Pós-COVID-19 Aguda
6.
Vet Pathol ; 59(4): 661-672, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35001763

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in an ongoing pandemic with millions of deaths worldwide. Infection of humans can be asymptomatic or result in fever, fatigue, dry cough, dyspnea, and acute respiratory distress syndrome with multiorgan failure in severe cases. The pathogenesis of COVID-19 is not fully understood, and various models employing different species are currently applied. Ferrets can be infected with SARS-CoV-2 and efficiently transmit the virus to contact animals. In contrast to hamsters, ferrets usually show mild disease and viral replication restricted to the upper airways. Most reports have used the intranasal inoculation route, while the intratracheal infection model is not well characterized. Herein, we present clinical, virological, and pathological data from young ferrets intratracheally inoculated with SARS-CoV-2. Infected animals showed no significant clinical signs, and had transient infection with peak viral RNA loads at 4 days postinfection, mild to moderate rhinitis, and pulmonary endothelialitis/vasculitis. Viral antigen was exclusively found in the respiratory epithelium of the nasal cavity, indicating a particular tropism for cells in this location. Viral antigen was associated with epithelial damage and influx of inflammatory cells, including activated neutrophils releasing neutrophil extracellular traps. Scanning electron microscopy of the nasal respiratory mucosa revealed loss of cilia, shedding, and rupture of epithelial cells. The currently established ferret SARS-CoV-2 infection models are comparatively discussed with SARS-CoV-2 pathogenesis in mink, and the advantages and disadvantages of both species as research models for zoonotic betacoronaviruses are highlighted.


Assuntos
COVID-19 , Doenças dos Roedores , Animais , Antígenos Virais , COVID-19/veterinária , Cricetinae , Modelos Animais de Doenças , Furões , Mucosa Respiratória , SARS-CoV-2
7.
Microorganisms ; 9(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34946122

RESUMO

Canine kobuvirus (CaKV) is a globally distributed pathogen of dogs and is predominantly associated with infection of the gastrointestinal tract. However, an etiological link to enteric disease has not been established since CaKV has been identified in both asymptomatic dogs and animals with diarrheic symptoms. In this study, an extraintestinal CaKV infection was detected by next-generation sequencing in a fox (Vulpes vulpes) in Germany concomitant with a canine distemper virus (canine morbillivirus; CDV) co-infection. Phylogenetic analysis of the complete coding region sequence showed that this strain was most closely related to a CaKV strain detected in a dog in the United Kingdom in 2008. The tissue and cellular tropism of CaKV was characterized by the detection of viral antigens and RNA. CaKV RNA was detected by in situ hybridization in different tissues, including epithelial cells of the stomach and ependymal cells in the brain. The use of a new RT-qPCR assay for CaKV confirmed the systemic distribution of CaKV with viral RNA also detected in the lymph nodes, bladder, trachea, and brain. The detection of a CDV infection in this fox suggests that immunosuppression should be further investigated as a contributing factor to the enhanced extraintestinal spread of CaKV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...